Some axioms are quite interesting. For example, the axiom of the empty set - "an empty set exists". But I ask, how empty is it? How much nothing is contained within it? Can it contain 'one' amount, 'some' amount, 'all' amounts or 'no' amounts of nothing? If the empty set exists it surely implies that the set containing the answer to the previous question exists within a set. The only one that we know 'can' exist without needing further axioms is the only one that does not seem to make sense to a normal mind: the empty set contains no amount of nothing.
Viewcount: 336
Viewcount: 571
Viewcount: 467
Viewcount: 330
Viewcount: 335
Viewcount: 470
Viewcount: 343
Viewcount: 626
Viewcount: 23
Viewcount: 326
Viewcount: 337
Viewcount: 299
Viewcount: 333
Viewcount: 329
Viewcount: 326
Viewcount: 356
Viewcount: 317
Viewcount: 382
Viewcount: 349
Viewcount: 291
Viewcount: 306
Viewcount: 407
Viewcount: 493
Viewcount: 665
Viewcount: 378
Viewcount: 334
Viewcount: 332
Viewcount: 814
Viewcount: 309
Viewcount: 462
Viewcount: 313
Viewcount: 423
Viewcount: 307
Viewcount: 299
Viewcount: 305
Viewcount: 313
Viewcount: 282
Viewcount: 349
Viewcount: 277
Viewcount: 363
Viewcount: 283
Viewcount: 283
Viewcount: 320
Viewcount: 336
Viewcount: 448
Viewcount: 328
Viewcount: 346
Viewcount: 264
Viewcount: 288
Viewcount: 275
Viewcount: 325
Viewcount: 266
Viewcount: 435
Viewcount: 438
Viewcount: 438
Viewcount: 346
Viewcount: 296
Viewcount: 585
Viewcount: 374
Viewcount: 283
Viewcount: 278
Viewcount: 312
Viewcount: 424
Viewcount: 311
Viewcount: 310
Viewcount: 291
Viewcount: 299
Viewcount: 306
Viewcount: 297
Viewcount: 302
Viewcount: 321
Viewcount: 301
Viewcount: 285
Viewcount: 403
Viewcount: 310
Viewcount: 304
Viewcount: 271
Viewcount: 279
Viewcount: 299
Viewcount: 420
Viewcount: 280
Viewcount: 282
Viewcount: 286
Viewcount: 332
Viewcount: 291
Viewcount: 318
Viewcount: 339